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Abstract
Graphene is a recently discovered carbon-based material with unique physical properties. This
is a monolayer of graphite, and the two-dimensional electrons and holes in it are described by
the effective Dirac equation with a vanishing effective mass. As a consequence, the
electromagnetic response of graphene is predicted to be strongly nonlinear. We develop a
quasi-classical kinetic theory of the nonlinear electromagnetic response of graphene, taking into
account the self-consistent-field effects. The response of the system to both harmonic and pulse
excitation is considered. The frequency multiplication effect, resulting from the nonlinearity of
the electromagnetic response, is studied under realistic experimental conditions. The frequency
upconversion efficiency is analyzed as a function of the applied electric field and parameters of
the samples. Possible applications of graphene in terahertz electronics are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The region of the electromagnetic spectrum from 0.3 to 20 THz
(the so called terahertz gap) is a frontier area for research in
physics, chemistry, biology, material science and medicine [1].
Due to the recent progress in THz technology [1–3], the
THz studies continue to expand, involving more and more
scientists in the development of new sources and detectors
of THz radiation, as well as in research on applications of
THz waves in different areas. The search for new methods
of THz emission and detection and development of simple,
compact and inexpensive THz sources and detectors remains
a challenging problem.

The most common technique for producing low-power
electromagnetic radiation at frequencies above 0.3 THz is
through nonlinear multiplication (upconversion) of lower
frequency oscillators [3, 4], � → m�, m = 2, 3, . . .. Such
upconverters, which are commonly based on GaAs Schottky
barrier diodes, successfully work as doublers and triplers (m =
2 and 3), but provide very poor conversion efficiency for higher
order harmonics (m > 3) [3, 4]. The search for alternative
nonlinear materials, which could provide efficient frequency
multiplication, especially with an upconversion factor m > 3,
is therefore highly desirable.

In this paper we discuss the recently predicted [5] effect
of the frequency multiplication in graphene. Graphene is a
new material, which was experimentally obtained about three
years ago [6–8] and immediately attracted great interest from
researchers; for recent reviews see [9, 10]. Graphene is a
monolayer of graphite, in which carbon atoms are packed in a
dense two-dimensional (2D) honeycomb lattice [11, 12]. This
is a two-dimensional semimetal, with a very specific electronic
band structure, figure 1. The lower (l = 1) and upper (l = 2)
branches of the energy spectrum Epl touch each other at six
points at the corners of the hexagon-shaped Brillouin zone.
In the ideal case of a uniform, undoped graphene at zero
temperature, the lower band Ep1 is fully occupied while the
upper band Ep2 is empty, and the Fermi level goes through
these six, so called Dirac points P(i) = h̄K(i), i = 1, . . . , 6.
Near the Dirac points, at p ≈ h̄K(i), the electrons in graphene
have a linear, quasirelativistic dispersion with zero effective
mass of quasiparticles [9],

Epl = (−1)l V |p − h̄K(i)| = (−1)l V
√

p̃2
x + p̃2

y, (1)

where p̃ = p − h̄K(i). Only two of the six Dirac points
in the Brillouin zone, usually referred to as K and K ′
points, are inequivalent [11, 12, 14]. In the phenomena,
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Figure 1. The band structure of electrons in graphene (side view and
top view), calculated in the tight-binding approximation. The energy
is normalized to the full width of the energy band �E = 2

√
3h̄V/a,

where V ≈ 108 cm s−1 is the Fermi velocity, equation (1), and
a = 2.46 Å is the lattice constant. The two branches of the energy
spectrum Epl , l = 1, 2, touch each other at six points at corners of
the hexagonal Brillouin zone. The coordinates of the Dirac points are
Ki = (4π/3a)(cos φi , sin φi), where φi = π/6 + 2πi/3,
i = 1, . . . , 6. Details of the band structure of graphene and of the
tight-binding calculations can be found, e.g., in [11–13].

discussed here, the states of the K and K ′ cones give additive
contributions to the ac graphene response, so that one can
consider only the states in the vicinity of one Dirac cone,
accounting for the second cone by introducing the valley-
degeneracy factor gv = 2. The velocity V in (1) is about
108 cm s−1, according to measurements [7, 8]. Near the
K(i) points the graphene quasiparticles are described by two-
component spinor wavefunctions, determined by the effective
Dirac equation, and are called Dirac fermions.

The unusual, linear dispersion of graphene quasiparti-
cles near the Fermi level leads to a number of interesting

and so far not fully understood transport phenomena, such
as minimal electrical conductivity [7, 8, 15–26], absence
of weak localization [27], unconventional quantum Hall ef-
fect [7, 8, 16, 28–30], observable even at room tempera-
ture [31], and others. Electrodynamic properties of graphene,
which have been studied both experimentally [32–39] and
theoretically [5, 16, 17, 25, 29, 30, 40–53], also demon-
strate non-trivial features in the frequency-dependent conduc-
tivity [16, 25, 29, 40, 53], photon-assisted transport [41], mi-
crowave and far-infrared response [30, 42–46], plasmon spec-
trum [47–51], etc. New electromagnetic modes, specific only
for the graphene system, have been also predicted [52, 53].

Both the transport and electrodynamic properties, briefly
outlined above, have been studied within the linear-
response theory. Going beyond the linear-response approach,
one can show [5, 54] that graphene should demonstrate
strongly nonlinear electromagnetic response at relatively low
amplitudes of the external electric field. In particular,
irradiation of graphene by an electromagnetic wave with the
frequency � should lead to the frequency multiplication � →
m� with odd values of m = 3, 5, 7, . . .. This makes
graphene a simple and natural frequency multiplier [5, 54] and
opens up exciting opportunities for using graphene in terahertz
electronics.

In general, prospects for building graphene-based devices
for terahertz applications are very attractive. Apart from
the frequency multiplication, graphene devices could be used
in plasmon-based voltage-controlled sources and detectors of
THz radiation. The physics of such devices has long been
discussed in the literature [55–60] and the main ideas of 2D
plasmon-assisted detection and generation of radiation have
been confirmed in a number of experiments on conventional
2D electron systems [61–64]. Graphene has that advantage
that the Fermi velocity of electrons in it is much higher than
in other semiconductor materials, and its plasma frequency
is widely tunable and lies in the THz range [50, 51]. It
should be noticed that a material closely related to graphene—
carbon nanotubes—has also demonstrated a great potential for
terahertz applications [65–72].

In this paper we discuss the effects of the nonlinear
electromagnetic response and the frequency multiplication in
graphene [5, 54]. We consider the response of graphene to
a strong uniform external time-dependent electric field within
the semi-classical kinetic theory (section 2). In addition
to results obtained in [5, 54], we take into account the
self-consistent-field effects (section 2.3), which should be
important under realistic experimental conditions, and discuss
both harmonic (section 2) and pulse excitation (section 3) of
the system. The results obtained are summarized and discussed
in section 4.

2. Self-consistent kinetic theory of nonlinear
electromagnetic response of graphene

2.1. Qualitative consideration

Due to the linear dispersion (1), the response of graphene
to an external electromagnetic field turns out to be
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Figure 2. Qualitative behavior of time dependences of (a) the electric
field, (b) the momentum, and (c) the velocity and current of a particle
with the energy dispersion (2).

intrinsically nonlinear, which naturally leads to the frequency
multiplication effect. Physically, the possibility of the
frequency upconversion in graphene can be explained in a
very simple manner. Consider a classical 2D particle with the
charge −e and the energy spectrum

Ep2 = V p = V
√

p2
x + p2

y (2)

in the external time-dependent harmonic electric field Ex(t) =
E0 cos �t , figure 2(a). From now on we will consider only
electrons in the vicinity of one Dirac cone, omit the tilde
in (1) and take into account the presence of two inequivalent
cones in the Brillouin zone by the valley-degeneracy factor
gv = 2. According to the Newton equation of motion
dpx/dt = −eEx(t), the momentum px(t) is then given by the
sine function px(t) ≡ p0(t) = −(eE0/�) sin �t, figure 2(b).
In conventional 2D electron systems with the parabolic energy
dispersion, the velocity vx and hence the current jx = −ensvx

are proportional to px , so that the normal 2D system responds
at the same frequency � (here ns is the areal density of
particles). In graphene, however, the velocity

vx = ∂ Ep2

∂px
= V

px√
p2

x + p2
y

(3)

is a strongly nonlinear function of px , therefore the response
of graphene is substantially anharmonic, figure 2(c). In the
extreme limit, when py in equation (3) is close to zero, vx is
proportional to sgn(px) and the ac electric current is

jx(t) = ens V sgn(sin �t)

= ens V
4

π

{
sin �t + 1

3
sin 3�t + 1

5
sin 5�t + . . .

}
. (4)

The current (4) contains all odd Fourier harmonics, with the
amplitudes jm , m = 1, 3, 5 . . ., falling very slowly with the
harmonic number, jm ∼ 1/|m|. An isolated graphene layer
should thus work as a simple and natural frequency multiplier,
with the operating frequency variable in a broad range.

2.2. Kinetic approach

The current (4) above is independent of the electric field, which
means that equation (4) is not completely correct. The reason
is that in the above simple consideration we did not take into
account the Fermi distribution of electrons over the quantum
states in graphene. To do this, we use [5] the kinetic Boltzmann
theory, which allows one to get an exact response of the system,
not imposing any restrictions on the amplitude of the external
electric field Eext(t).

In a real experimental situation, the graphene sheet lies on
top of a silicon oxide–silicon structure, and the gate voltage VG

can be applied between graphene and the silicon substrate, in
order to control the density of electrons or holes in graphene.
In addition, the graphene–SiO2–Si system can be doped by
impurities. Both the gate voltage and the doping can shift
the chemical potential μ of electrons in graphene to the upper
Ep2 or to the lower Ep1 band. Assume that the chemical
potential μ lies in the upper band Ep2 = V p, the temperature
is small, T � μ, and the system is subjected to the external
time-dependent ac electric field Eext(t). Then the momentum
distribution function of electrons fp(t) is described by the
Boltzmann equation

∂ fp(t)

∂ t
− ∂ fp(t)

∂p
eEext(t) = 0, (5)

in which we have ignored collisions of electrons with impuri-
ties, phonons and other lattice imperfections. Equation (5) has
the exact solution

fp(t) = F0
(
p − p0(t)

)
, (6)

where F0(p) = {1 + exp[(V p − μ)/T ]}−1 is the Fermi–Dirac
function, and p0(t) = −e

∫ t
−∞ Eext(t ′) dt ′ is the solution of

the single particle classical equation of motion. The electric
current j(t) = −egsgvS−1

∑
p v fp(t) then assumes the form

j(t) = − gsgveV

(2π h̄)2

∫
p dp

p
F0

(
p − p0(t)

)
, (7)

where gs = 2 is the spin degeneracy and S is the sample area.
If the temperature is zero, T = 0, and the chemical potential is
finite, μ > 0, the current j(t) can be rewritten in the form

j(t)
ens V

= P√
1 + P2

G(Q), (8)

where P ≡ P(t) = −p0(t)/pF, P(t) = |P(t)|, pF = μ/V is
the Fermi momentum, and

ns ≡ ne = gsgv p2
F

4π h̄2 = gsgvμ
2

4π h̄2V 2
(9)

is the density of electrons in the upper band. The function
G(Q) in (8) is defined and analyzed in appendix, and Q(t) ≡
2P(t)/[1 + P2(t)] � 1.

If the external field Eext is small, so that the
Fermi distribution is weakly disturbed, P(t) � 1, the
function G(Q) ≈ 1, see equation (A.3), and j(t) ≈
(nse2V/pF)

∫ t
−∞ Eext(t ′) dt ′. In this, linear-response regime,
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Figure 3. (a) The time dependence of the ac electric current, measured in units ens V , at harmonic excitation of the system at the frequency �.
The temperature is zero, T/μ = 0; the curves are labeled by the values of the electric field parameter E = eE0V/�μ. (b) The Fourier
components of the current (8) as a function of E at T/μ = 0. At ET → ∞ the curves tend to the values 4/πm; see equation (4).

the current is directly proportional to the electric field. If the
external excitation is harmonic,

Eext(t) = E0 cos �t, (10)

the current is j(t) ≈ (nse2V/pF�)E0 sin �t, which corre-
sponds to the linear-response frequency-dependent collision-
less scalar Drude conductivity [25, 29, 30, 42, 43, 53]

σ(�) = inse2V

�pF
= i

e2

h̄

gsgv

4π

μ

h̄�
. (11)

If the external field Eext is large and the Fermi distribution
is strongly disturbed, P(t) can be much larger than unity, the
function G(Q) ≈ 1, and the response of the system to a
harmonic excitation (10) is described by equation (4). The
nonlinear regime (4) is thus achieved at |p0| 
 pF, or at

E ≡ eE0V

�μ

 1 : (12)

the energy gained by electrons from the external field during
the oscillation period should be large as compared to their
average equilibrium (Fermi) energy.

Figure 3(a) illustrates the time dependence of the
current (8) at the harmonic excitation of the system (10). One
sees that in the low-field limit the response is linear (the j (t)
dependence has a sinusoidal shape), while at strong fields
the time dependence of the current tends to that given by
equation (4). In figure 3(b) we show the Fourier components of
the current versus the field parameter E . One sees that when E
becomes larger than � 4, the Fourier amplitudes saturate and
one enters the ultimate nonlinear regime.

The strong-field condition (12) can be rewritten as

E0 
 2h̄�
√

πns

e
√

gsgv
, (13)

which shows that the required ac electric field grows linearly
with the electromagnetic wave frequency and with the square
root of the electron density. At f � 100 GHz and ns �
1011 cm−2, the inequality (13) is fulfilled at E0 � 200 V cm−1.

The results obtained above refer to the case T/μ =
0 (μ is finite). The opposite limit μ = 0 (at a finite
temperature, μ/T = 0) is difficult to realize in the whole
sample, at least in currently available systems. Due to the
inhomogeneity of the samples, the zero-energy point fluctuates
in space, with a typical local electron or hole density of the
order of 1011 cm−2 [73]. The condition μ/T = 0 can thus
be satisfied only locally, at certain points inside the sample.
Nevertheless, for the sake of completeness (and in view of
possible availability of higher quality samples in future), we
also present here results [5] for the case μ/T = 0. For
arbitrary values of μ/T some results can be also found in [54].

At a finite temperature and the vanishing chemical
potential μ = 0 both electrons and holes contribute to the
charge carrier density ns = ne + nh = πgsgvT 2/12h̄2V 2 and
to the current. Starting again from equation (7) but accounting
for the hole contribution and setting μ = 0, we get

j(t) = ens V
PT

PT

12

π3

∫ ∞

0
x dx

×
∫ π

0
dθ

cos θ

1 + exp

(√
x2 + P2

T − 2x PT cos θ

) , (14)

where the momentum p0(t) is now normalized by the
characteristic temperature-dependent momentum, PT ≡
PT (t) = −p0(t)/pT , PT (t) = |PT (t)|, and pT = T/V .

If the external field is small, PT (t) � 1, equation (14)
gives the linear-response current

j(t) ≈ ens V PT (t)
6 ln 2

π2
= nse2V 2

T

6 ln 2

π2

∫ t

−∞
Eext(t ′) dt ′,

(15)
proportional to the electric field. If the external excitation
is harmonic, equation (10), the current is j(t) =
(nse2V 2/T�)(6 ln 2/π2)E0 sin �t, which corresponds to
the linear-response frequency-dependent collisionless Drude
conductivity [25]

σμ=0,T (�) = 6 ln 2

π2

inse2V 2

T �
= i

ln 2

2π

e2

h̄

gsgvT

h̄�
. (16)
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Figure 4. (a) The time dependence of the ac electric current, measured in units ens V , at harmonic excitation of the system at the frequency �.
The chemical potential is zero and the temperature is finite, μ/T = 0; the curves are labeled by the values of the electric field parameter
ET = eE0V/�T . (b) The Fourier components of the current (14) as a function of the field parameter ET = eE0V/�T at μ/T = 0.
At ET → ∞ the curves tend to the values 4/πm; see equation (4).

In the strong-field regime PT 0 � 1 equation (14) is reduced,
again, to (4). The dimensionless field parameter in the case
μ/T = 0 is defined as ET = eE0V/T�.

Figure 4(a) demonstrates the time dependence of the
current (14) at the harmonic excitation of the system (10).
The j (t) dependence is qualitatively similar to that shown in
figure 3(a). In figure 4(b) we show the Fourier components of
the ac electric current, for m = 1, 3 and 5, as a function of the
field parameter ET at μ = 0.

In the case μ/T = 0 the strong-field condition E � 1
assumes the form

E0 � �T

eV
. (17)

At the temperature T � 100 K and the frequency f �
100 GHz this corresponds to the requirement E0 � 50 V cm−1.

Using the quasi-classical (Boltzmann) approach for the
description of electromagnetic response of graphene imposes
certain restrictions on the validity of the presented theory.
Physically, using the Boltzmann theory, one takes into account
the intra-band contribution to the ac electric current, but
ignores the inter-band contribution due to transitions between
the lower (quasi-hole) and the upper (quasi-electron) bands.
This is possible if the frequency of the external radiation
satisfies the inequality h̄� � max{μ, T }. In practically
interesting cases (the density ns � 1011–1012 cm−2, room
temperature) this restricts the frequency of radiation by ∼10–
30 THz. The presented quasi-classical theory can thus be used
in the whole terahertz gap.

2.3. Self-consistent-field effects and radiative decay

In section 2.2 we have not considered effects of the radiative
decay, which can be important under realistic experimental
conditions in graphene. It was assumed that the graphene
electrons move in the sample under the action of the external
electric field Eext(t), and this directly leads to the time-
dependent electric current j(t), equation (8). In general,
however, the time-dependent electric current creates, in its turn,
a secondary (induced) electric field Eind(t), which acts back

on the electrons and should be added to the external field.
Calculating the response of the system, one should take into
account that electrons respond not to the external, but to the
total self-consistent electric field Etot(t) = Eext(t) + Eind(t).
This results in the effect of electromagnetic reaction of the
medium (graphene) to the external field and can reduce the
frequency upconversion efficiency. How substantially the
radiative decay suppresses the efficiency of the frequency
multiplication is studied below.

Consider an infinite 2D electron system with the graphene
sheet lying in the plane z = 0. We assume that the external
electromagnetic wave is incident upon the graphene layer along
the z axis and induces the ac current in the layer. This current
produces the induced electric field Eind(t), which is added to
the external one. The Boltzmann equation for the momentum
distribution function of the electrons should then be written as

∂ fp(t)

∂ t
− ∂ fp(t)

∂p
eEtot

z=0(t) = 0, (18)

instead of (5). The solution of this equation, as well as the
electric current, can again be written in the form (6) and (7),
respectively, but the classical momentum p0(t) now satisfies
the equation

p0(t) = −e
∫ t

−∞
Etot

z=0(t
′) dt ′

= −e
∫ t

−∞

[
Eind

z=0(t
′) + Eext

z=0(t
′)
]

dt ′, (19)

where the field Etot
z=0(t) is not known and should be calculated

self-consistently. To do this, we recall that the current and the
induced electric field are related by the Maxwell equations,

Eind
z=0(t) = −2π j(t)/c. (20)

Combining (19), (20) and (7) we get the following self-
consistent equation of motion for the momentum p0(t):

dp0(t)

dt
+ e2gsgvV

2π h̄2c

∫
p dp

p
F0 (p − p0(t)) = −eEext

z=0(t).

(21)

5
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After the nonlinear equation (21) is resolved with respect
to the momentum p0(t), the current j(t) can be found from
equation (7). Equations (21) and (7) describe the nonlinear
self-consistent response of graphene to an arbitrary external
time-dependent electric field Eext

z=0(t). The second term in the
left-hand side of equation (21) describes the radiative decay
effects in the infinite 2D graphene layer.

In conventional 2D electron systems with the parabolic
energy dispersion and the effective mass m	 of 2D electrons
the self-consistent equations for p0(t) and j(t), similar to (21)
and (7), have the form

dp0(t)

dt
+ 2πnse2

m	c
p0(t) = −eEext

z=0(t),

j(t) = −ens

m	
p0(t).

(22)

Here 
par ≡ 2πnse2/m	c is the radiative decay rate [74]
in the conventional (parabolic) 2D electron systems. In (22)
we have ignored the scattering due to impurities and phonons
(the corresponding term γ p0(t) can be added to the left-
hand side of the first equation (22)). In high-electron-
mobility GaAs/AlGaAs quantum-well samples the radiative
decay 
par substantially exceeds the scattering rate γ , 
par 

γ , and determines the linewidth of the cyclotron, plasmon,
and magnetoplasmon resonances [74, 75]. As the graphene
mobility is also very high, one can expect that at high
frequencies the radiative effects are more important in
graphene than the scattering effects. This justifies ignoring the
scattering terms in equation (21).

Returning back to the non-parabolic graphene system,
we rewrite (21) (at T = 0) in terms of the dimensionless
momentum P(t) = −p0(t)/pF:

dP(t)

dt
+ 


P√
1 + P2

G(Q) = e

pF
Eext

z=0(t), (23)

where


 = gsgv

4

e2

h̄c

2μ

h̄
= V

e2

h̄c

√
gsgvπns . (24)

The current is determined, again, by equation (8).
In the linear-response regime, when |P| � 1 and G ≈ 1,

equation (23) gives

dP(t)

dt
+ 
P(t) = e

pF
Eext

z=0(t). (25)

From here one sees that the quantity 
 has the physical
meaning of the radiative decay rate in graphene in the linear-
response regime. In contrast to 
par, 
 is proportional to the
square root of the charge carrier density. For experimentally
relevant densities ns the value of 
 lies in the subterahertz
range, 
/2π(THz) ≈ 0.13

√
ns(1011 cm−2).

Now consider the response of graphene to a harmonic
excitation (10). The solution now depends on two
dimensionless parameters, E = eE0V/μ� and 
/�. If the
field parameter E is small, |P| � 1, G ≈ 1, and the response is
linear. The strong-electric-field results for the time dependence
of the momentum P(t) and of the dimensionless electric

Figure 5. The time dependence of (a) the momentum P(t) and
(b) the current j (t)/ens V at the field parameter E = 10 at several
values of the radiative decay 
/�.

current j (t)/ens V are shown in figure 5. If 
/� does not
exceed the value of about E/2 (=5 in the example of figure 5),
the self-consistent-field effects lead only to the phase shift
of the current, not influencing the shape of the current–time
curves and hence not reducing the amplitudes of the higher
harmonics. At higher values of 
/� (between 
/� ∼ E/2
and 
/� ∼ E) the shape of the current–time curves smoothly
modifies from the step-like form to the sinusoidal form, and
at 
/� � E the higher harmonics are fully suppressed.
Quantitatively, this can be seen from analysis of the Fourier
harmonics of the current. Expanding the current in the Fourier
series j (t)/ens V = ∑

m[Am cos(m�t) + Bm sin(m�t)], we
calculate the amplitudes Fm = √

A2
m + B2

m and plot them as a
function of 
/� in figure 6 for the lowest harmonic numbers
from 1 to 9. One sees that, indeed, the higher harmonics are
suppressed at 
/� � E , but almost not influenced by the
radiative decay if 
/� � 0.7E . We have performed similar
calculations at other values of the field parameter E and found
the same results if E 
 1.

6
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Figure 6. Fourier harmonics of the current j (t)/ens V at E = 10 as a
function of 
/�.

The condition of the efficient frequency upconversion,
with account of the self-consistent-field effects and of the
radiative decay, thus assumes the form E � 
/�, or

E0 � μ


eV
= 2πnseV

c
≈ 300 V cm−1 × ns (1011 cm−2).

(26)
This condition does not depend on the frequency of radiation.

It should be noticed that in the above consideration the
sample was assumed to be infinite. Quantitatively, this means
that the lateral dimensions of the graphene layer L should
exceed the wavelength of radiation λ. At the frequency of
1 THz the above derived formulas will thus be valid for
samples with dimensions larger than �300 μm. As the
currently available samples are smaller (�10–30 μm), the
above consideration overestimates the role of the radiative
decay. If L � λ, the radiative decay rate 
 in the
above formulas should be replaced by 
(L/λ)2, [75]. The
upconversion effect should then be observed at electric fields
lower than those given by the estimate (26).

3. Response of graphene to a pulse excitation

Now consider the response of graphene to a pulse excitation
Eext(t) = E0τ0δ(t), where E0 and τ0 are the amplitude and the
duration of the pulse. The pulse amplitude E0 can be arbitrarily
strong. Equation (23) now assumes the form

dP(t)

dt
+ 


P√
1 + P2

G(Q) = e

pF
E0τ0δ(t) (27)

and can be solved explicitly; see appendix (the current is
determined again by equation (8)). Figure 7(a) shows the
dependence P(t), calculated from equation (A.5), at different
values of the electric field parameter P0 = eE0τ0/pF. If the
external field is small, P0 � 1, the system relaxes after the
pulse excitation exponentially, similar to the conventional 2D
electron systems with the parabolic dispersion,

P(t) = P0 exp(−
t), P0 � 1. (28)

The characteristic decay time is determined in this case by the
inverse radiation decay rate (24). If the external field is strong,
P0 
 1, the momentum of the system first decays linearly in
time,

P(t) = P0 − 
t, P0 � 1. (29)

The linear dependence (29) remains valid until P(t) reduces
to P(t) � 1 (until t � P0/
); after this P(t) decays
exponentially as in (28). The current j(t) in the strong
excitation regime P0 
 1 reaches its highest possible value
ens V and is time independent at t � P0/
, and then
exponentially decays (at the timescale � 
−1) down to zero,
as shown in figure 7(b).

The fact that after the pulse excitation electrons in
graphene move with a constant velocity V ≈ 108 cm s−1 for
quite a long time, ∼P0/
, may have interesting applications.
In a finite-size graphene sample such excited electrons will be
reflected by the boundaries and oscillate in the sample with
the typical frequency ∼V/L, lying in the terahertz range, if
the sample dimension L � 1 μm. As at P0 
 1 the time
P0/
 is much longer than the oscillation period, this may lead
to a coherent terahertz radiation from graphene excited by a
strong pulse electric field. In order to properly describe this
phenomenon the plasma effects should be taken into account.

Figure 7. The time dependence of (a) the momentum P(t)/P0 and (b) the electric current j (t)/ens V , at a pulse excitation of graphene.
Different curves correspond to different pulse amplitudes P0 = eE0τ0/pF.
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4. Summary and conclusions

We have developed the quasi-classical kinetic theory of the
nonlinear electromagnetic response of graphene. Electrody-
namic equations, describing the self-consistent response of the
system to a uniform time-dependent external electric field,
have been derived and solved for the cases of harmonic and
pulse excitation. The presented theory is valid at h̄� �
max{μ, T }, which covers the frequency range up to ∼10–
30 THz for relevant experimental conditions.

If the system is subjected to a pulse excitation and the
amplitude of the external field is small (the linear regime), its
response is described by a standard exponential decay with
the characteristic decay rate 
. The density dependence of
the radiative decay rate in graphene (
 ∝ n1/2

s ) differs from
that of conventional 2D electron systems (
par ∝ ns ). In
the nonlinear regime, when the pulse amplitude is strong,
the response of the system is not exponential. The average
momentum of graphene electrons falls linearly after the pulse
excitation, with the average current remaining constant during
a time proportional to the amplitude of the external field and
inversely proportional to 
.

The graphene layer excited by the harmonic electromag-
netic wave with the frequency �, re-emits radiation at higher
harmonics m�, m = 3, 5, 7, . . ., with the efficiency falling
slowly, as 1/|m|. The amplitude of the external electric field
required for getting into the nonlinear regime grows with the
charge carrier density and is of the order of several hun-
dred V cm−1 for typical experimental parameters. The oper-
ating frequency of such a frequency multiplier can vary in a
broad range, from microwaves up to mid-infrared. The effi-
ciency of the frequency upconversion effect in graphene can be
increased further by using the plasmon, the cyclotron, or the
magnetoplasmon resonances.

The predicted nonlinear phenomena in graphene open
up new exciting opportunities for building electronic and
optoelectronic devices for the terahertz and subterahertz part
of the electromagnetic spectrum.
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Appendix. Function G(Q)

The function

G(Q) = 4

π Q

∫ π/2

0
cos θdθ

(√
1 + Q cos θ − √

1 − Q cos θ
)

(A.1)
can be expanded in powers of Q,

G(Q) =
∞∑

l=0


(3/2)


(1/2 − 2l)

Q2l

22l−1l!(l + 1)! . (A.2)

Since |Q| = |2P/(1 + P2)| � 1, expansion (A.2) is valid at
all values of P . The first terms of this expansion are

G(Q) ≈ 1 + 3

32
Q2 + 35

1024
Q4 . . . . (A.3)

If Q = 1, then

G(1) = 8
√

2

3π
≈ 1.200. (A.4)

The solution of equation (27) can be written as follows:


t =
∫ P0

P(t)

√
1 + P2

PG(Q)
dP, Q = 2P

1 + P2
, (A.5)

where P(t) is the projection of the vector P(t) on the direction
of the external electric field and P0 ≡ P(0) = eE0τ0/pF.
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